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Asymptotic Synchronization of Leader-Follower 
Networks of Uncertain Euler-Lagrange Systems 

1. Klotz, Z. Kan, 1. M. Shea, E. L. Pasiliao, and W. E. Dixon 

Abstract-This paper investigates the synchronization of a 
network of Euler-Lagrange systems with leader tracking. The 

Euler-Lagrange systems are heterogeneous and uncertain and 
contain bounded, exogenous disturbances. Network communi­
cation is governed by an undirected topology. The network 
leader has a time-varying trajectory which is known to only 
a subset of the follower agents. A Robust Integral Sign of the 
Error (RISE) based decentralized control law is developed to 
guarantee semi-global asymptotic agent synchronization and 
leader tracking. 

I. INTRODUCTION 

Synchronization of multi-agent systems involves matching 

the state of an agent with that of its neighboring agents in 

a network and has motivating applications in the fields of 

physics, engineering, social studies, etc. [1 ]-[ 4]. As opposed 

to typical consensus approaches, synchronization emphasizes 

similarity of neighbors' states as consensus is being achieved; 

the difference between a system's state and that of its 

neighbors is generally included as an error in the control 

law (c.f. [5]-[7]). 

Consensus of networked systems without a leader synchro­

nizes the systems' states but does not allow for control of the 

consensus value, such as in [8] and [9]. In such approaches, 

the consensus value is some (often unknown) function of 

the initial states of the networked systems. Alternatively, 

synchronization may be performed with a network leader or a 

specified desired trajectory (often referred to as a virtual net­

work leader), in which all follower systems both synchronize 

and track a time-varying state. Simultaneous reference track­

ing and synchronization of a network of nonidentical Euler­

Lagrange systems wherein all systems know the desired 

trajectory are explored in [10]-[12]. Practical applications 

often contain network topologies in which not every node 

receives information from the leader; e.g., only vehicles in 

the front of a formation tracking a vehicle target may be able 

to observe the location of the target. Synchronization with a 

leader state which is available to only a subset of the total 

nodes is examined in results such as [5], [6], and [13]-[15]. 

1. Klotz, Z. Kan, and W. E. Dixon are with the Department of Mechanical 
and Aerospace Engineering, University of Florida, Gainesville FL 32611-
6250 USA. Email: {jklotz, kanzhen0322, wdixon}@ufl.edu. 1. M. Shea is 
with the Department of Electrical and Computer Engineering, University of 
Florida, Gainesville FL 32611-6130 USA. Email: jshea@ece. ufl. edu. E. L. 
Pasiliao is with the Air Force Research Laboratory, Munitions Directorate, 
Eglin Air Force Base, FL 32542, USA. Email: eduardo@ufl. edu. 

This research is supported in part by NSF award numbers 0901491, 
1161260, 1217908, and a contract with the Air Force Research Laboratory, 
Munitions Directorate at Eglin AFB. Any opinions, findings and conclusions 
or recommendations expressed in this material are those of the authors and 
do not necessarily reflect the views of the sponsoring agency. 

Typical agent synchronization results have focused on sin­

gle or double-integrator dynamics (c.f. [6], [16]). Motivation 

to model the systems by nonlinear Euler-Lagrange dynamics 

arises from the fact that many physical systems can be 

represented in Euler-Lagrange form [17]. For example, it 

may be desirable to synchronize the position of multiple 

robotic manipulators in an assembly line, maintain matching 

generator phase angles in an electrical grid, synchronize the 

attitude of distributed satellites, etc. For such applications, 

results are strengthened by considering heterogeneous Euler­

Lagrange systems; i.e., networked robotic manipulators that 

may not have the same kinematics or dynamics. 

Even if the dynamics are structurally the same, unknown 

exogenous disturbances are inherent to every system and may 

cause undesirable network performance. Exogenous distur­

bances are included in the neural network-based adaptive 

synchronization result in [5] and in the sliding mode-based 

synchronization result in [6]. The continuous controller in 

[5] yields a uniformly ultimately bounded result, whereas 

[6] achieves exponential synchronization through the use of 

a discontinuous controller. 

This paper investigates the synchronization of networked 

systems consisting of a leader and followers in an undirected 

topology, where at least one follower is connected to the 

leader. The networked systems are modeled with Euler­

Lagrange dynamics which are nonlinear, heterogeneous, and 

uncertain. In comparison to results such as [5] and [6], the de­

veloped continuous Robust Integral Sign of the Error (RISE) 

based controller yields semi-global asymptotic decentralized 

synchronization of the states of the followers to the time­

varying state of the leader, despite the effects of bounded 

exogenous disturbances and model uncertainties. Simulation 

results are provided for the synchronization of a network 

of robotic manipulators to illustrate the performance of the 

developed approach. 

II. PROBLEM FORMULATION 

A. Preliminaries 

Graph theory provides convenient tools to describe the 

information exchange between multiple agents in a network. 

Consider a network consisting of one leader and N followers, 

where the leader is indexed by O. Let 9 = {V, £} be a fixed 

undirected graph with a non-empty finite set of nodes V = 

{O, 1 ,  ... , N} and a set of edges £ <:;; V x V. An undirected 

edge (i, j) E £ exists if nodes i and j share information. The 

set of neighbors which have information available to node i 
is defined as M � {j E V I (i, j) E £}. An adjacency matrix 
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A = [aij ] E ]R(N+l)x(N+l) is defined such that aij = aji > 
o if (i ,  j) E £ and aij = aji = 0 otherwise. It is assumed that 
the graph is simple, i.e., (i ,  i) tj. £, and thus aii = 0 Vi E V. 
Let D -£ diag{Do,Dl, . . .  ,DN} E ]R(N+l)x(N+l) be a 
diagonal matrix, where Di -£ LjEN, aij. The Laplacian 
matrix is then defined as £ -£ D - A. 

B. Dynamic Models and Properties 

The considered network has N + 1 agents which have dy­
namics described by nonidentical Euler-Lagrange equations 
of motion such that 

where Q � [ T T T ] T E mNm, ql , q2 , . . .  , qN 1& 

M � diag{Ml,M2, . . .  ,MN} E ]RNmxNm, 
G -£ diag {Gl, G2, . . .  , GN} E ]RNmxNm, F � 
[F{,Fi, · · ·  ,F�f E ]RNm, G -£ �Gr,Gr, ... ,G�f E 
]RNm, d � [dr,dL ... ,d�] E ]RNm, and 

" [ T T T ] T mNm F . .  T = Tl , T2 , . . .  , TN E 1& • or convemence In 
the subsequent analysis, the leader dynamics are represented 
as 

M0Qo + G0Qo + F0 + G0 = T0, (4) 

where Qo -£ IN®qo E ]RNm, M0 -£ IN®Mo E ]RNmxNm, 
G0 -£ IN ® Go E ]RNmxNm, F0 -£ IN ® Fo E ]RNm, 
G0 -£ IN ® Go E ]RNm, T0 -£ IN ® TO E ]RNm, IN denotes 
an N-dimensional column vector of ones, and ® denotes the 
Kronecker product. 

i = 1 ,2 ,  ... , N, (2) C. Network Properties 

where the zero index denotes the leader and all other agents, 
i = 1 ,2 ,  ... N, are followers. The terms in (1) and (2) 

are defined such that qj E ]Rm (j = 0 , 1 , ... , N) is the 
generalized configuration coordinate, Mj : ]Rm --+ ]Rmxm 
is the inertia matrix, Gj : ]Rm x ]Rm --+ ]Rmxm is the 
Coriolis/centrifugal matrix, Fj : ]Rm --+ ]Rm is the friction 
term, Gj : ]Rm --+ ]Rm is the vector of gravitational torques, 
Tj E ]Rm is the vector of control input torques to be 
designed, di : ]R>o --+ ]Rm (i = 1 ,  2 ,  ... , N) is a time­
varying nonlinear exogenous disturbance, and t E ]R�o is 
the elapsed time. 

The following system properties are used in the subsequent 
analysis. 

Property 1. The inertia matrix Mj is symmetric, positive 
definite, and satisfies mj 11�11

2 
:s; e Mj� :s; mj 11�112 V� E 

]Rm (j = 0 , 1 , ... , N), where mj E ]R is a positive known 
constant and mj E ]R is a known positive function [18]. 

Property 2. The functions Mj, Gj, Fj and 
Gj (j = 0 , 1 , ... , N) are second order differentiable 
such that their second time derivatives are bounded if 
q(k) E £00' k = 0 , 1 , ... ,3 [19]. 

The following assumptions are also required for the sub­
sequent analysis. 

Assumption 1. The nonlinear disturbance term, di, and its 
first two time derivatives are bounded by known constants 
for i = 1 ,2 ,  ... , N. 

Assumption 2. The leader control input, TO, is bounded. 

Assumption 3. The graph 9 is connected. 

The leader may be represented by a desired trajec­
tory instead of an actual agent. In this case, the desired 
trajectory is assumed to be designed such that q�k) E 
]Rm (k = 0 , 1 , ... ,4) exists and is bounded [18]. 

The equation of motion for the follower agents may be 
written as 

MQ + GQ + F+ G + d  = T, (3) 

The communication topology of the N + 1 agents is 
defined by the previously described graph 9 = {V, £} with 
V = {O, 1 ,  ... , N}. The analysis of the follower nodes is 
facilitated by creating a subgraph 9 = {V, E}, which is 
formed by removing the leader node and corresponding edges 
from the graph g. The neighbor set of the follower nodes is 
defined for all i E V as Ri -£ {j E V I (i ,j) E t}. 

The adjacency matrix, A = [aij ] E ]RNxN, corresponding 
to 9 is defined as aij = aji > 0 if (i ,  j) E E and 
aij = aji = 0 otherwise with aii = 0 Vi E V. Let 15 -£ 
diag {Dl, D2, . . .  , DN} E ]RNxN, where D i -£ LN=l aij. 
The leader-removed graph Laplacian matrix, l E ]Rflx N, of 
9 is then defined as 

(5) 

The leader-follower connectivity matrix B completes the 
communication topology description and is defined as B -£ 
diag{bl,b2, ... ,bN} with bi > 0 (i=1 ,2 , ... ,N) if 0 E 
Ni and bi = 0 otherwise. Note that because the graph 9 is 
undirected and connected and at least one follower agent is 
connected to the leader by Assumption 3, the matrix l+B is 
positive definite and syrrunetric [20]. The customarily used 
Laplacian matrix is positive semi-definite for a connected 
undirected graph; however, the matrix l, also known as 
the "Dirichlet" or "Grounded" Laplacian matrix, is designed 
such that l + B is positive definite given Assumption 3 [20]. 

III. CONTROL OBJECTIVE 

The objective is to design a continuous controller which 
ensures that N agents asymptotically track the state of the 
reference node with only self and neighbor signal feed­
back despite model uncertainties and bounded exogenous 
system disturbances. In addition, the second derivative of 
the generalized configuration coordinate, i.e., acceleration, is 
assumed to be unavailable. To quantify this objective, the 
local neighborhood position tracking error, el,i E ]Rm, is 
defined as [6] 

el,i -£ L aij (qj - qi) + bi (qo - qi) . (6) 

JEN; 
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The error signal in (6) includes the summation 
'£ j ENi aij (qj - qi) to penalize state dissimilarity between 
neighbors and the proportional term bi (qo - qi) to penalize 
state dissimilarity between a follower agent and the leader, 
if that connection exists. The ability to emphasize either 
follower synchronization or leader tracking is rendered by 
assigning aij = ka if aij > 0 and bi = kb if bi > 0, where 
ka, kb E IR are constant positive gains. 

An auxiliary tracking error, denoted by e2,i E IRm, is 
defined as 

(7) 

where CX1,i E IR denotes a constant positive gain. For brevity, 
let LB � ((l + B) ® 1m) E IRNmxNm. Note that because 
l + B is positive definite and symmetric, LB is positive 
definite and symmetric. The error systems in (6) and (7) 

may be represented as [5] 

(8) 

(9) 

h E !e.. (T T T )T mNm, w ere 1 e1 1, e1 2, . . .  , e1 N E 1& 

E !e.. (T T 
' 

T
'
)T ' mNm !e.. 2 e2 1, e2 2, . . .  , e2 N E 1& , Al 

diag (CX1,1, CX1,2 ', . . .  ,'CX1,N) ® 1m E IRNmxNm, and 1m 
is an m x m identity matrix. Another auxiliary error signal, 
R E IRNm, is defined as 

(10) 

where A2 � diag (CX2,1, CX2,2, . . .  , CX2,N) ® 1m E IRNmxNm 
and CX2,i E IR is a constant positive gain. 

IV. CONTROLLER DEVELOP MENT 

The open-loop tracking error system is developed by 
multiplying (10) by M and utilizing (3), (4) and (8)-(10) 

to obtain 
(11) 

where the auxiliary functions Sl E IRNm and S2 E IRNm are 
defined as 

Sl !e.. M (Q) M(iIT0 - M (Qo) M(iIT0 
-M(Q)10 (Qo,Qo) +M(Qo)10 (Qo,Qo) 
+ 1 (Q, Q) - 1 (Qo, Qo) 
+M(Q)L"i/ ( - AiEl + (AI + A2)E2) 
-M (Qo) L"i/ ( - AiEl + (AI + A2) E2) 
+M (Qo) L"i/ ( - AiEl + (AI + A2) E2) , 

S2 � M (Qo) M(iIT0 - M (Qo)fo (Qo, Qo) + 1 (Qo, Qo) , 

where the functional dependency of M is given for clarity, 
and the auxiliary functions 10 : IRNm X IRNm -+ IRNm and 
1 : IRNm X IRNm -+ IRNm are defined as 

(12) 

(l3) 

The RISE-based (c.f. [21], [22]) control input is designed as 

Ti � (ks,i + 1) e2,i + Vi, i = 1 ,  ... , N, (14) 

where Vi E IRm is the generalized solution to the differential 
equation 

(ks,i + 1) cx2,i e2,i 
+ L aij (Xisgn(e2,i) - Xj sgn (e2,j)) 
JENi 

+biXi sgn (e2,i) , Vi ( 0) = ViO, (15) 

where ViO E IRm is an initial condition, ks,i, Xi E 
IR are constant positive gains and sgn (.) is defined 
V� [6 6 . . .  �l f E IRI as sgn(�) !e.. 

[ sgn (6) sgn (6) . . .  sgn (�l) f. Note that the con-
troller in (14) is decentralized: only local communication 
is needed to compute the control authority dictated by the 
proposed control law. 

The following development exploits the fact that the 
controller in (14) has the time derivative 

Ti (ks,i + 1) (e2,i + cx2,ie2,i) 
+ L aij (Xi sgn (e2,i) - Xj sgn (e2,j)) 
JENi 

+biXi sgn (e2,i) . (16) 

To facilitate the stability analysis, the time derivative of (11) 

is expressed as 

MR = 
1 · � 

- "2MR + N + LBNd - LBE2 
-(Ks + 1Nm) ( E2 + A2E2 ) 
- LBf3 sgn (E2) , (17) 

where (16) is expressed in block form as 
T (Ks + 1Nm) ( E2 + A2E2) + LBf3 sgn (E2)' 
with Ks !e.. diag (ks,l, ks,2, . . .  , ks,N) ® 1m and 
f3 !e.. diag(X1,X2, . . .  ,XN) ® 1m. In (17), the 
unmeasurable/uncertain auxiliary terms fT E IRNm and 
Nd E IRNm are defined as 

� 6. 1 · . N = - "2MR + Sl + LBE2, 

Nd � L"i/d + L"i/82. 

(18) 

(19) 

The auxiliary terms in (18) and (19) are segregated such that 
after utilizing (8)-(10), Properties 1-2, Assumptions 1-2, and 
the Mean Value Theorem, the following upper bounds are 
satisfied [18] 

IlfTll � p ( I IZ I I) I IZ I I , 

INdil � (ai' i = 1 ,2 ,  ... , Nm, 

INdil � (b" i = 1 ,2 ,  ... , Nm, 

(20) 

(21) 

(22) 
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where p : lR>o -+ lR is a positive nondecreasing function 
[23, Appendi� A], Ndi and Ndi denote the ith element of 
Nd and Nd, respectively, the elements of (a E lRNm and 
(b E lRNm are upper bounds on the corresponding elements 
in Nd and Nd, respectively, and Z E lR3Nm is the composite 
vector 

(23) 

Note that this bounding process takes advantage of the 
relations Qo - Q = Li/ El, El = E2 - AIEl, and 
E2 = LBR - A2E2. Additionally, the term -�M (Q) R 
in (18) is upper bounded as in (20) by using the relation 
Q = Qo - Li/El' 

For clarity in the following analysis, let (a 
[ T T T JT h lTllm ' C;-al C;-a2 ... C;-aN ' w ere C;-ai E ll'\,. ,  t 

1 ,2 ,  ... , N. Similarly, let (b = [ c;-t;. c;-l; c;-l'N f, 
where C;-bi E lRm, i = 1 ,2 ,  ... , N. Furthermore, define the 
auxiliary bounding constant as 

where Amin (.) denotes the minimum eigenvalue. 

V. STABILITY ANALYSIS 

Theorem 1. The controller given in (14)-(15) ensures that all 

system signals are bounded under closed-loop operation and 

that the position tracking error is semi-globally regulated in 

the sense that 

Il qo - qill -+ O as t -+oo (i =I, 2 , ... ,N) 

(and thus Il qi - qjll -+ 0 'Vi ,j E V, i =I- j), provided that ks,i 
introduced in (14) is selected sufficiently large based on the 

initial conditions of the states (see the subsequent stability 

analysis), and the parameters O!l,i, 0!2,i, Xi (i = 1 ,2 ,  ... ,N) 
are selected according to the sufficient conditions 

1 
O!l' > ­

,t 2' 
1 

0!2' > -
,t 2' 

where Xi was introduced in (15). 

(24) 

(25) 

Proof (Sketch) Let V � {Y E lR3Nm+ll p (Il y ll) < 

2V1PAmin (KsLB)} be an open and connected set contain­
ing the origin y = 0, where y E lR3Nm+l is defined as 

(26) 

In (26), the auxiliary function P E lR is the generalized 
solution to the differential equation 

Nm 
P (to) = L ,Bj,j IE2j (to) I - E! (to) Nd (to), 

j=l 

where ,Bj,j denotes the lh diagonal element of ,B and E2j 
denotes the lh element of the vector E2. Provided the 
sufficient conditions in (25) are satisfied, then P ;::: 0; the 
proof is omitted for brevity. 

Let VL : V x lR:2:o -+ lR be a continuously differentiable 
function defined as 

",I T I T I T VL = '2 El El + '2 E2 E2 + '2 R M R + P. (28) 

The expression in (28) is positive definite and satisfies the 
inequalities 

where Al � �min{l,mmin},mmin � mi!,1 (mJ ) , and 
JEV 

A2 � max {I'�L;=lmj(qj)} , provided the sufficient 
conditions in (24) and (25) are satisfied. 

Consider the set Sv C V defined as 

Sv � { y E Vip ( If!; IIYII) < 2V1P Amin (KsLB) } . 
(30) 

Under Filippov's framework, a Filippov solution Y can 
be established for the closed-loop system if = h (y, t) if 
y (to) E Sv, where h : lR3Nm+l X lR:2:0 -+ lR3Nm+1 

denotes the right-hand side of the closed-loop error signals. 
It can be shown that the time derivative of (28) exists almost 
everywhere (a.e.), i.e., for almost all t E [to, tfl. After 
using the upper bound in (20), the Raleigh-Ritz theorem, 
and Young's inequality, the time derivative of (28) can be 
upper-bounded as 

a.e. VL < -1P IIZI12 -Amin (KsLB) IIRI12 
+p(IIZII) IIRII IIZII· 

Completing the squares for terms in (31) yields 

VL 
a�. 

_ (1P _ p2 (IIZII) ) IIZI12 . 4Amin (KsLB) 

(31) 

(32) 

The expression in (32) can be further upper-bounded by 
. a.e. 2 VL � -clIZII 

for all y E V, for some positive constant c E R 

(33) 

The inequalities in (29) and (33) can be used to show 
that V E £00' Thus, EI, E2, R E £00' The closed-loop 
error system can be used to conclude that the remaining 
signals are bounded. From (33), [24, Corollary 1] can be 
invoked to show that c IIZI12 -+ 0 as t -+ 00 'Vy (to) E Sv. 
Based on the definition of Z in (23), IIEI II -+ 0 as 
t -+ 00 'Vy (to) E Sv. Noting the definition of EI in (8) 

and the fact that ((l + B) ® 1m) is full rank, it is clear that 
IIQo - QII -+ 0 as t -+ 00 if and only if liEd -+ 0 as 
t -+ 00. Thus, Ilqo - qill -+ 0 as t -+ 00 'Vi E V. It logically 
follows that Ilqi - qjll -+ 0 as t -+ oo'Vi ,j E V, i =I- j. • 

Note that the region of attraction in (30) can be made 
arbitrarily large to include any initial conditions by adjusting 
the control gains ks,i (i.e., a semi-global result). 
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The distributed controller shown in Section IV is decen­
tralized in the sense that only local feedback is necessary to 
compute the controller value. However, note that because the 
constant gain ks,i must be selected based on sufficient con­
ditions involving LB, which contains information regarding 
the configuration of the entire network, this gain is chosen in 
a centralized manner before the control law is implemented. 

VI. SIMULATION 

To demonstrate the performance of the developed con­
troller, simulation results are presented for the synchroniza­
tion of four follower agents to a leader's state trajectory. 
Each network follower is modeled as a two-link robotic 
manipulator (a typical example of an Euler-Lagrange system) 
with the form 

[ PI + 2P3C2 
P2 + P3C2 

+ [ -P382Q2 
P382Ql 

+ [ idl 0 
o id2 

where q1, q2 denote joint angles, C2 £ COS(Q2) ' 82 � 
sin(Q2)' T1 and T2 represent torque control inputs, and dr 
represents the added disturbances. The constant unknown 
parameters PI,P2,P3, idl, id2 E lR differ for each ma­
nipulator. The virtual leader is defined by the trajectory 

Qo = [ 2c�:
(
��? ], where the first and second elements are 

the desired trajectories for the first and second joint angles, 
respectively. The time-varying disturbance term has the form 

dr = [ �::� f��� ], where the constants a, b, c, d E lR 

differ for each mampulator. The control policy in (14) is 
implemented as Ti £ (ks,i + 1) (e2,i - e2,i ( 0)) + Vi with 
Vio = 0, where the term e2,i ( 0) is included so that Ti ( 0) = 0 
and has no impact on the stability result (i.e., (16) remains 
the same). Additionally, in an effort to improve the gain 
tuning procedure, the gains ks,i and Xi are implemented 
as diagonal matrices such that ks,i = diag (ksl,i, ks2,i) and 
Xi = diag (XI,i, X2,i). The network topology is shown in 
Fig. 1, the simulation parameters are shown in Table I, 

and the network performance is provided in Fig. 2 and 
3. The network shown in Fig. 1 has an undirected and 
connected follower network. Fig. 2 demonstrates that asymp­
totic synchronization of the follower agents and tracking of 
the leader trajectory are achieved, despite the exogenous 
disturbances. Fig. 3 shows the low control effort of the 
individual controllers. 

Figure l. Network Topology 
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SIMULATION PARAMETERS 

Joint 1 

1.5 2.5 

Joint 2 

'"' ' '' ' ''''''''''''' 
", 

", .. " 0.5 1.5 2.5 
Time (5) 

Figure 2. Joint Angles 
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Figure 3. Control Effort 
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VII. CONCLUSION 

A decentralized RISE-based controller was developed 

which ensures semi-global asymptotic tracking and synchro­

nization of networked followers' states towards a leader's 

time-varying state using a continuous control input, despite 

model uncertainty and exogenous disturbances, where the 

leader and follower agents have uncertain and heterogeneous 

Euler-Lagrange dynamics. The graph of the networked fol­

lower agents is assumed to be connected and at least one 

follower agent receives information from the leader. Sim­

ulation results are provided for the proposed decentralized 

controller. 
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